EYFS

EYFS will use concrete resources and pictorial representations to teach the following objectives. If, or when ready, staff will move children on to the use of abstract, following guidance for Year 1 .

Key Vocabulary:

	Concrete	Pictorial
Addition in EYFS	Combining 2 parts to make a whole Use a variety of resources e.g. shells, teddy bears, cars. Part-whole models Use cubes to add two numbers together. Use part whole model	Combining 2 parts to make a whole Use pictures to add two numbers together.
	Counting on Start with the larger number and count on 1 by 1 to find the answer.	Counting on Start at the larger number and count on in ones to find the answer.

\begin{tabular}{|c|c|c|}
\hline Multiplication in EYFS \& Concrete \& Pictorial \\
\hline \& \begin{tabular}{l}
Recognising and making equal groups. \\
Only in 2's, 5's and 10's. \\
There are 4 equal groups with 2 in each group.
\[
2,4,6,8
\] \\
There are 8 altogether
\end{tabular} \& \begin{tabular}{l}
Recognising and making equal groups. \\
Only in 2's, 5's and 10's. \\
Children to represent the practical resources in a picture. Counting in 2's, 5's and 10's.
\end{tabular} \\
\hline \& \begin{tabular}{l}
Doubling \\
Use practical activites to show how to double a number.
\end{tabular} \& \begin{tabular}{l}
Doubling \\
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\end{tabular}

\hline \& | Counting in multiples. |
| :--- |
| Use cubes, Numicon and other objects in the classroom. Only in 2's, 5's and 10's. |
| Count in multiples supported by concrete objects in equal groups | \& | Counting in multiples. |
| :--- |
| Use cubes, Numicon and other objects in the classroom. |
| Only in 2's, 5's and 10's. |
| Use a number line or pictures to continue support when counting in multiples of 2, 5 and 10 |

\hline
\end{tabular}

Division in EYFS	Concrete	Sharing objects into groups
Sharing using a range of objects.	Sharing objects into groups	

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10s and 1s to develop their calculation strategies, especially in addition and subtraction.

Key Vocabulary: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10s, to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations. A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with $15-3$ and $15-13$, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.
In Year 2, they will start to see calculations presented in a column format, although this is not expected to be formalised until KS2. We show the column method in Year 2 as an option; teachers may not wish to include it until Year 3.

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.
They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.
Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2,5 and 10 times-tables and how they are related to counting.

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.
In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

Year 1

	Concrete	Pictorial	Abstract
Year 1 Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Counting and adding more Use a number line to understand how to link counting on with finding one more. One more than 6 is 7 . 7 is one more than 6 . Learn to link counting on with adding more than one. $5+3=8$
	Understanding part-part-whole relationship Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4. The whole is 6.	Understanding part-part-whole relationship Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5. The whole is 6 .	Understanding part-part-whole relationship Use a part-whole model to represent the numbers. $\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$
	Knowing and finding number bonds within 10 Break apart a group and put back together to find and form number bonds.	Knowing and finding number bonds within 10 Use five and ten frames to represent key number bonds.	Knowing and finding number bonds within 10 Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero.

	Adding the 1s Children use bead strings to recognise how to add the 1s to find the total efficiently. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the 1s Children represent calculations using ten frames to add a teen and 1 s . $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the 1s Children recognise that a teen is made from a 10 and some 1 s and use their knowledge of addition within 10 to work efficiently. $3+5=8$ So, $13+5=18$
	Bridging the 10 using number bonds Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10. So, 7 add 5 is 10 and 2 more.	Bridging the 10 using number bonds Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Bridging the 10 using number bonds Use a part-whole model and a number line to support the calculation. $9+4=13$
Year 1 Subtraction	Counting back and taking away Children arrange objects and remove to find how many are left. 1 less than 6 is 5 . 6 subtract 7 is 5 .	Counting back and taking away Children draw and cross out or use counters to represent objects from a problem. $\mathrm{q}-\square=\square$ There are \square children left.	Counting back and taking away Children count back to take away and use a number line or number track to support the method. $9-3=6$

Finding a missing part, given a whole and a part
Children separate a whole into parts and understand how

one part can be found by subtraction. | Finding a missing part, given a whole and a part |
| :--- |
| Children represent a whole and a part and understand how |
| to find the missing part by subtraction. |
| Children use a part-whole model to support the subtraction |
| to find a missing part. |

Year 1 Multiplication	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. A B C	Recognising and making equal groups Children draw and represent equal and unequal groups. B	Describe equal groups using words Three equal groups of 4 . Four equal groups of 3 .
	Finding the total of equal groups by counting in 2 s , 5 s and 10s There are 5 pens in each pack ... $5 \ldots 10 \ldots 15 \ldots 20 \ldots 25 \ldots 30 \ldots 35 \ldots 40 \ldots$	Finding the total of equal groups by counting in 2 s , 5 s and 10s 100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s.	Finding the total of equal groups by counting in 2 s , 5 s and 10s Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
Year 1 Division	Grouping Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups.	Grouping Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Grouping Children may relate this to counting back in steps of 2,5 or 10.

Sharing
Share a set of objects into equal parts and work out how

many are in each part. | Sharing |
| :--- |
| Sketch or draw to represent sharing into equal parts. This |
| may be related to fractions. | Rharing shared into 2 equal groups gives 5 in each group.

Year 2

	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding 10s and 1s	Group objects into 10s and 1s. Bundle straws to understand unitising of 10 s .	Understand 10s and 1s equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals.
Adding 10s	Use known bonds and unitising to add 10s. (III) (III)	Use known bonds and unitising to add 10s. I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s.

	I know that $4+3=7$. So, I know that 4 tens add 3 tens is 7 tens.		$\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$
Adding a 1-digit number to a 2-digit number not bridging a 10	Add the 1s to find the total. Use known bonds within 10. 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones. This can also be done in a place value grid.	Add the 1 s . 34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.	Add the 1 s . Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy. This can be represented horizontally or vertically. $34+5=39$ or
Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds.	Complete a 10 using number bonds.	Complete a 10 using number bonds.

	There are 4 tens and 5 ones. I need to add 7 . I will use 5 to complete a 10, then add 2 more.		$\begin{aligned} & 7=5+2 \\ & 45+5+2=52 \end{aligned}$
Adding a 1-digit number to a 2-digit number using exchange	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.
Adding a multiple of 10 to a 2-digit number	Add the 10 s and then recombine. 27 is 2 tens and 7 ones. 50 is 5 tens. There are 7 tens in total and 7 ones. So, $27+50$ is 7 tens and 7 ones.	Add the 10s and then recombine. 66 is 6 tens and 6 ones. $66+10=76$ A 100 square can support this understanding.	Add the 10s and then recombine. $37+20=?$ $\begin{aligned} & 30+20=50 \\ & 50+7=57 \end{aligned}$ $37+20=57$

Adding a multiple of 10 to a 2-digit number using columns	Add the 10s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10 s represented vertically. Children must understand how the method relates to unitising of 10 s and place value. $\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2-digit numbers	Add the 10s and 1s separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total.	Add the 10 s and 1 s separately. Use a part-whole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$	Add the 10 s and the 1 s separately, bridging 10 s where required. A number line can support the calculations.

	$35+23=58$	$32+11=43$	
Adding two 2-digit numbers using a place value grid	Add the 1s. Then add the 10 s .		Add the 1s. Then add the 10 s. $\begin{array}{r\|r\|} \mathrm{T} & \mathrm{O} \\ \hline 3 & 2 \\ +1 & 4 \\ \hline & 6 \\ \hline \end{array}$
Adding two 2-digit numbers with exchange	Add the 1s. Exchange 10 ones for a ten. Then add the 10s.		Add the 1s. Exchange 10 ones for a ten. Then add the 10 s .

Year 2 Subtraction				
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . $\otimes \otimes \not \Delta \phi \not \subset \not \subset \not \subset \not \subset$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known multiples of $10-3=$ So, 10 tens	mber bonds and unitising to subtract tract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a singledigit number	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. This may be done in or out of a place value grid.		Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds. $\begin{array}{r} \mathrm{T} 0 \\ \begin{array}{rl} 3 & 9 \\ -\quad 3 \\ \hline & 6 \\ \hline & \\ & 9-3=6 \\ 39-3=36 \end{array} \end{array}$
Subtracting a singledigit number bridging 10	Bridge 10 by using known bonds. 35-6 I took away 5 counters, then 1 more.	Bridge 10 35-6 First, I will	using known bonds. tract 5, then 1 .	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$

Using arrays to
represent
multiplication and
support
understanding

	-() (:) (:) - 3 groups of $10 \ldots 10,20,30$ $3 \times 10=30$	○○○○○○○○○○ ○○○○○○○○○○ 000000000 $\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	
Year 2 Division			
Sharing equally	Start with a whole and share into equal parts, one at a time.	Represent the objects shared into equal parts using a bar model.	Use a bar model to support understanding of the division.

	000000000000 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared They get 5 each. 15 shared equally between 3 . They get 5 each.	 20 shared into 5 equal parts. There are 4 in each part.	$18 \div 2=9$
Grouping equally	Understand how to make equal groups from a whole. \square 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements.	Understand how to relate division by grouping to repeated subtraction.

Using known times-
tables to solve
divisions

KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.
Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and
children should be encouraged at every stage to make choices about which methods to apply.
In Year 4, the steps are shown without such fine detail,
although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns.
By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 . Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively.
Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2and 3-digit numbers by a single digit.
Children develop column methods to support multiplications in these cases.
For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3, it is effective to partition 423 into 300, 120 and 3, as these can be divided by 3 using known facts.
Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount, and develop this with the aid of a bar model and other representations alongside.
in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.
Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100, and also with place value.

Year 3

	Concrete	Pictorial	Abstract
Year 3 Addition			
Understanding 100s	Understand the cardinality of 100, and the link with 10 tens. Use cubes to place into groups of 10 tens. -**** 10 -* 0° -***** 30 - © - - ${ }^{40}$ - * * * * 60 - © - * 70 	Unitise 100 and count in steps of 100.	Represent steps of 100 on a number line and a number track and count up to 1,000 and back to 0 .
Understanding place value to 1,000	Unitise 100s, 10s and 1s to build 3-digit numbers.	Use equipment to represent numbers to 1,000. 200 240 Use a place value grid to support the structure of numbers to 1,000 . Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount.	Represent the parts of numbers to 1,000 using a partwhole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.

Adding 100s	Use known facts and unitising to add multiples of 100. $\begin{gathered} 3+2=5 \\ 3 \text { hundreds }+2 \text { hundreds }=5 \text { hundreds } \\ 300+200=500 \end{gathered}$	Use known facts and unitising to add multiples of 100. $3+4=7$ $\begin{aligned} & 3 \text { hundreds }+4 \text { hundreds }=7 \text { hundreds } \\ & \qquad 300+400=700 \end{aligned}$	Use known facts and unitising to add multiples of 100. Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{gathered} 3+2=5 \\ 300+200=500 \end{gathered}$
3-digit number + 1s, no exchange or bridging	Use number bonds to add the 1s. Now there are $4+4$ ones in total. $\begin{gathered} 4+4=8 \\ 214+4=218 \end{gathered}$	Use number bonds to add the 1 s . Use number bonds to add the ls . $5+4=9$ $\begin{gathered} 245+4 \\ 5+4=9 \\ 245+4=249 \end{gathered}$	Understand the link with counting on. $245+4$ Use number bonds to add the 1s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1 s. $\begin{gathered} 5+4=9 \\ \text { So, } 245+4=249 \end{gathered}$

3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of 1 s , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.
3-digit number + 2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$ Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$
3-digit number + 3-digit number, no exchange	Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid.	Represent the place value grid with equipment to model the stages of column addition.	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.

	$326+541$ is represented as:		
3-digit number + 3-digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid. (8978	Use column addition, ensuring understanding of place value at every stage of the calculation. Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$?
Representing addition problems, and selecting appropriate methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select appropriate methods.	Children understand and create bar models to represent addition problems. $275+99=?$	Use representations to support choices of appropriate methods. I will add 100, then subtract 1 to find the solution.

	$\begin{aligned} 4-3 & =1 \\ 214-3 & =211 \end{aligned}$	$\begin{aligned} 9-4 & =5 \\ 319-4 & =315 \end{aligned}$	$\begin{gathered} 6-4=2 \\ 476-4=472 \end{gathered}$
3-digit number 1s, exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged. Use place value equipment.	Represent the required exchange on a place value grid. $151-6=?$	Calculate mentally by using known bonds. $\begin{gathered} 151-6=? \\ 151-1-5=145 \end{gathered}$
3-digit number 10s, no exchange	Subtract the 10s using known bonds. $381-10=?$ 8 tens with 1 removed is 7 tens.	Subtract the 10s using known bonds. $\begin{gathered} 8 \text { tens }-1 \text { ten }=7 \text { tens } \\ 381-10=371 \end{gathered}$	Use known bonds to subtract the 10s mentally. $\begin{aligned} & 372-50=? \\ & 70-50=20 \end{aligned}$ So, $372-50=322$

	$381-10=371$		
3-digit number 10s, exchange or bridging required	Use equipment to understand the exchange of 1 hundred for 10 tens.	Represent the exchange on a place value grid using equipment. $210-20=?$ I need to exchange 1 hundred for 10 tens, to help subtract 2 tens. $210-20=190$	Understand the link with counting back on a number line. Use flexible partitioning to support the calculation. $235-60=?$ $\begin{aligned} & 235=100+130+5 \\ & 235-60=100+70+5 \\ & =175 \end{aligned}$
3-digit number up to 3-digit number	Use place value equipment to explore the effect of splitting a whole into two parts, and understand the link with taking away.	Represent the calculation on a place value grid.	Use column subtraction to calculate accurately and efficiently.

\begin{tabular}{|c|c|c|c|}
\hline support understanding of the times-tables \& \begin{tabular}{l}
There are 6 groups of 4 pens. \\
There are 4 groups of 6 bread rolls. \\
I can use \(6 \times 4=24\) to work out both totals.
\end{tabular} \& \begin{tabular}{l}
0000 \\
0000 \\
0000 \\
0000
\[
\begin{aligned}
\& 6 \times 4=24 \\
\& 4 \times 6=24
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
I need to work out 4 groups of 7 . \\
I know that \(7 \times 4=28\) \\
so, I know that \\
4 groups of \(7=28\) \\
and \\
7 groups of \(4=28\).
\end{tabular} \\
\hline Understanding and using \(\times 3, \times 2, \times 4\) and \(\times 8\) tables. \& \begin{tabular}{l}
Children learn the times-tables as 'groups of', but apply their knowledge of commutativity. \\
I can use the \(\times 3\) table to work out how many keys. I can also use the \(\times 3\) table to work out how many batteries.
\end{tabular} \& Children understand how the \(\times 2, \times 4\) and \(\times 8\) tables are related through repeated doubling. \& Children understand the relationship between related multiplication and division facts in known times-tables.

$$
\begin{aligned}
& 2 \times 5=10 \\
& 5 \times 2=10 \\
& 10 \div 5=2 \\
& 10 \div 2=5
\end{aligned}
$$

\hline Using known facts to multiply 10s, for example

\[
3 \times 40

\] \& | Explore the relationship between known times-tables and multiples of 10 using place value equipment. |
| :--- |
| Make 4 groups of 3 ones. | \& Understand how unitising 10s supports multiplying by multiples of 10 . \& Understand how to use known times-tables to multiply multiples of 10 .

\hline
\end{tabular}

	Make 4 groups of 3 tens. What is the same? What is different?	4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$	$\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$
Multiplying a 2-digit number by a 1-digit number	Understand how to link partitioning a 2-digit number with multiplying. Each person has 23 flowers. Each person has 2 tens and 3 ones. There are 3 groups of 2 tens. There are 3 groups of 3 ones. Use place value equipment to model the multiplication context.	Use place value to support how partitioning is linked with multiplying by a 2-digit number. $3 \times 24=?$ $3 \times 4=12$	Use addition to complete multiplications of 2-digit numbers by a 1-digit number. $\begin{aligned} & 4 \times 13=? \\ & 4 \times 3=12 \\ & 12+40=52 \\ & 4 \times 13=52 \end{aligned} \quad 4 \times 10=40$

		$\begin{aligned} & 5 \times 23=? \\ & 5 \times 3=15 \\ & 5 \times 20=100 \\ & 5 \times 23=115 \end{aligned}$	0 00 000 100 100					
Year 3 Division								
Using times-tables knowledge to divide	Use knowledge of known times-tables to calculate divisions. 24 divided into groups of 8 . There are 3 groups of 8 .	Use knowledge of known times-tables to calculate divisions. $48 \div 4=12$ 48 divided into groups of 4. There are 12 groups. $4 \times 12=48$		Use knowledge of known times-tables to calculate divisions. I need to work out 30 shared between 5 . I know that $6 \times 5=30$ so I know that $30 \div 5=6$. A bar model may represent the relationship between sharing and grouping.				

		$48 \div 4=12$	$24 \div 8=3$ $32 \div 8=4$	
Understanding remainders	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further. \|	IIIIIIIIII $\square \square \square \mid$ There are 13 sticks in total. There are 3 groups of 4 , with 1 remainder.	Use images to explain remainders. 00000 - 00000 00000 $22 \div 5=4$ remainder 2	Understand that the remainder is what cannot be shared equally from a set. $\begin{aligned} & 22 \div 5=? \\ & 3 \times 5=15 \\ & 4 \times 5=20 \\ & 5 \times 5=25 \ldots \text { this is larger than } 22 \\ & \text { So, } 22 \div 5=4 \text { remainder } 2 \end{aligned}$
Using known facts to divide multiples of 10	Use place value equipment to understand how to divide by unitising. Make 6 ones divided by 3 . Now make 6 tens divided by 3 . What is the same? What is different?	Divide multiples of 10 by unitising. 12 tens shared into 3 equal groups. 4 tens in each group.	Divide multiples of 10 by a single digit using known times-tables. $180 \div 3=?$ 180 is 18 tens. 18 divided by 3 is 6 . 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$	
2-digit number divided by	Children explore dividing 2-digit numbers by using place value equipment.	Children explore which partitions support particular divisions.	Children partition a number into 10s and 1s to divide where appropriate.	

1－digit number，no remainders	TMITIT णाITITI サाITIT $48 \div 2=?$ First divide the 10 s． （ （1） Then divide the 1 s ． ロロロロ ロロロロ	I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 42 \div 3=14 \end{aligned}$	$\begin{aligned} & 60 \div 2=30 \\ & 8 \div 2=4 \\ & 30+4=34 \\ & 68 \div 2=34 \end{aligned}$ Children partition flexibly to divide where appropriate． $\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$ I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \end{aligned}$ $\begin{aligned} & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$
2－digit number divided by 1－digit number， with remainders	Use place value equipment to understand the concept of remainder． Make 29 from place value equipment． Share it into 2 equal groups． There are two groups of 14 and	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ \square $29 \div 2=14 \text { remainder } 1$	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \\ & 17 \div 5=3 \text { remainder } 2 \\ & 67 \div 5=13 \text { remainder } 2 \end{aligned}$

	1 remainder.		There are 13 children in each line and 2 children left out.
Year 4			
	Concrete	Pictorial	Abstract
Year 4 Addition			
Understanding numbers to 10,000	Use place value equipment to understand the place value of 4-digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between 1,000s and 100s. 1,000 (100) 1000 $2,000+500+40+2=2,542$	Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Choosing mental methods where appropriate	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000 s. 1 thousand +2 thousands $=3$ thousands	Use unitising and known facts to support mental calculations. I can add the 100s mentally.	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$

			$\begin{array}{rrrr} \text { Th } & \mathrm{H} & \mathrm{~T} & \mathrm{O} \\ \hline 2 & 48 & \mathrm{I}^{\prime} & 2 \\ - & 2 & 4 & 3 \\ \hline 2 & 2 & 5 & 9 \\ \hline \end{array}$
Representing subtractions and checking strategies		Use bar models to represent subtractions where a part needs to be calculated. I can work out the total number of Yes votes using 5,762-2,899. Bar models can also represent 'find the difference' as a subtraction problem.	Use inverse operations to check subtractions. I calculated 1,225-799 $=574$. I will check by adding the parts. The parts do not add to make 1,225. I must have made a mistake.
Year 4 Multiplication			

Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1, 10 and 100. 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100.	Use known facts and understanding of place value and commutativity to multiply mentally. $\begin{aligned} & 4 \times 7=28 \\ & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $\begin{aligned} & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$
Understanding times-tables up to 12×12	Understand the special cases of multiplying by 1 and 0 . $5 \times 1=5$ $5 \times 0=0$	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table I know that $7 \times 5=35$ so I know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ 3×7 $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$
Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2 .	Understand how multiplication and partitioning are related through addition.	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$

	\square		$\begin{aligned} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+48 \\ & =108 \end{aligned}$
Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4×136 using equipment. I can work out how many 1s, 10s and 100s. There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds ... 4 hundreds $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3-digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.
Multiplying more than two numbers	Represent situations by multiplying three numbers together.	Understand that commutativity can be used to multiply in different orders.	Use knowledge of factors to simplify some multiplications. $24 \times 5=12 \times 2 \times 5$

	 Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\begin{aligned} & \underbrace{5 \times 2}_{10} \times 3=30 \\ & 10 \times 3=30 \end{aligned}$	$\begin{aligned} 2 \times 6 \times 10 & =120 \\ 12 \times 10 & =120 \\ 10 \times 6 \times 2 & =120 \\ 60 \times 2 & =120 \end{aligned}$	$\begin{aligned} & \underbrace{12 \times 5}_{12 \times 10}=120 \\ & \text { So, } 24 \times 5=120 \end{aligned}$
Year 4 Division			
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array 000000 0000000 0000000 0000000 $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide.	Represent divisions using place value equipment.	Use known facts to divide 10s and 100s by a single digit. $15 \div 3=5$

	8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	$\mathrm{q} \div 3=\square$ (1)11)(1) 111 $90 \div 3=\square$ $900 \div 3=\square$ $1001100 \text { (100) } 100 \text { 100 } 100$ $9 \div 3=3$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	$\begin{aligned} & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$
Dividing 2-digit and 3-digit numbers by a single digit by partitioning into $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s	Partition into 10s and 1s to divide where appropriate. $39 \div 3=?$ $39=30+9$ $\begin{aligned} 30 \div 3 & =10 \\ 9 \div 3 & =3 \\ 39 \div 3 & =13 \end{aligned}$	Partition into 100s, 10s and 1s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ 3 groups of I ten 3 groups of 3 ones $39=30+9$ $\begin{aligned} 30 \div 3 & =10 \\ 9 \div 3 & =3 \\ 39 \div 3 & =13 \end{aligned}$	Partition into $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s using a part-whole model to divide where appropriate. $142 \div 2=?$ $100 \div 2=\square 40 \div 2=\square 6 \div 2=\square$ $100 \div 2=50$ $40 \div 2=20$ $6 \div 2=3$ $\begin{array}{r} 50+20+3=73 \\ 142 \div 2=73 \end{array}$
Dividing 2-digit and 3-digit numbers by a single digit, using flexible partitioning	Use place value equipment to explore why different partitions are needed. $42 \div 3=?$	Represent how to partition flexibly where needed. $84 \div 7=?$	Make decisions about appropriate partitioning based on the division required.

	I will split it into 30 and 12, so that I can divide by 3 more easily.	I will partition into 70 and 14 because I am dividing by 7. $84 \div 7=12$	Understand that different partitions can be used to complete the same division.
Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared.	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14 \text { remainder } 2$	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$ $95 \div 4=23$ remainder 3

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage. Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.
Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4 -digit numbers by single-digit and 2-digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 .
Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions. Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.
Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: 50\%, 25\%, 10\% and 1%.

		$0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	$\begin{aligned} & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.453+0.664$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 2 \\ +0 \cdot 4 \\ +0 \cdot 6 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $$ Include additions where the numbers of decimal places are different. $3.4+0.65=?$ $\begin{array}{r} 0 \cdot \text { Tth } \text { Hth } \\ \hline 3 \cdot 4 \quad 0 \\ +0 \cdot 6 \quad 5 \\ \hline \end{array}$
Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.	Use column subtraction methods with exchange where required.

	$150 \div 30=5$	$180 \div 30=6$ 12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{array}{r} 0 \\ 5 \end{array} \quad 5 \quad 6$ Use multiplication to check. $556 \times 7=?$ $6 \times 7=42$ $50 \times 7=350$ $500 \times 7=3500$ $3,500+350+42=3,892$

	$2,411,301+500,000=2,911,301$	$\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations. This can be written as: $\begin{aligned} & 16 \times 4+16 \times 6 \\ & \frac{16 \times 4}{64}+\frac{16 \times 6}{96}=160 \end{aligned}$	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$
Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. $\begin{array}{rrrr} \hline \text { Th } & \text { H } & \text { T } & \\ \hline 2 & 6 & 7 & 9 \\ - & 5 & 3 & 4 \\ \hline 2 & 1 & 4 & 5 \end{array}$	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.

	Represent 0.3. Multiply by 10 . Exchange eac of ten tenths. $0.3 \times 10=?$ $0.3 \text { is } 3 \text { tenths. }$ 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	$0.3 \times 10=3$	$\begin{aligned} & =2,400 \\ 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures. 3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths. $\begin{aligned} & 4 \times 1 \mathrm{~cm}=4 \mathrm{~cm} \\ & 4 \times 0.3 \mathrm{~cm}=1.2 \mathrm{~cm} \\ & 4 \times 1.3=4+1.2=5.2 \mathrm{~cm} \end{aligned}$	Represent calculations on a place value grid.$\begin{aligned} & 3 \times 3=9 \\ & 3 \times 0.3=0.9 \end{aligned}$T O \bullet Tth •(1) (1) (1) (1) Understand the link between multiplying decimals and repeated addition.	Use known facts to multiply decimals. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 0.3=1.2 \\ & 4 \times 0.03=0.12 \\ & 20 \times 5=100 \\ & 20 \times 0.5=10 \\ & 20 \times 0.05=1 \end{aligned}$ Find families of facts from a known multiplication. I know that $18 \times 4=72$. This can help me work out: $\begin{aligned} & 1.8 \times 4=? \\ & 18 \times 0.4=? \\ & 180 \times 0.4=? \\ & 18 \times 0.04=? \end{aligned}$ Use a place value grid to understand the effects of multiplying decimals.

8 tenths divided into 4 groups. 2 tenths in each group.

Use a bar model to represent divisions.

$4 \times 2=8$
 $8 \div 4=2$

So, $4 \times 0.2=0.8$
$0.8 \div 4=0.2$

Use short division to divide decimals with up to 2
decimal places.
$8 \longdiv { 4 \cdot 2 4 }$
$0 \cdot$
$8 \longdiv { 4 \cdot 4 2 \quad 4 }$

$0 \cdot 5$
8

$0 \cdot 5 \quad 3$
$8 \quad 4 \cdot{ }^{4} 2{ }^{2} 4$

